usual topology - Definition. Was ist usual topology
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist usual topology - definition

SPACE FORMED BY THE ''N''-TUPLES OF REAL NUMBERS
Real n-space; R-n; Real plane; Standard topology; Usual topology; R^n; Real coordinate plane
  • (''n'' + 1)}} orthant (standard cone).
  • [[Cartesian coordinates]] identify points of the [[Euclidean plane]] with pairs of real numbers

Trivial topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete.
Computational topology         
SUBFIELD OF TOPOLOGY WITH AN OVERLAP WITH AREAS OF COMPUTER SCIENCE
Algorithmic topology
Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.
Étale topology         
GROTHENDIECK TOPOLOGY ON THE CATEGORY OF SCHEMES, WHOSE COVERING FAMILIES ARE JOINTLY SURJECTIVE FAMILIES OF ÉTALE MORPHISMS
Etale topology; Étale sheaf
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

Wikipedia

Real coordinate space

In mathematics, the real coordinate space of dimension n, denoted Rn or R n {\displaystyle \mathbb {R} ^{n}} , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.

The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension n form a real coordinate space of dimension n.

These one to one correspondences between vectors, points and coordinate vectors explain the names of coordinate space and coordinate vector. It allows using geometric terms and methods for studying real coordinate spaces, and, conversely, to use methods of calculus in geometry. This approach of geometry was introduced by René Descartes in the 17th century. It is widely used, as it allows locating points in Euclidean spaces, and computing with them.